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Dynamical properties of discrete breathers in curved chains with first
and second neighbor interactions
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We present the study of discrete breather dynamics in curved polymerlike chains consisting of masses
connected via nonlinear springs. The polymer chains are one dimensional but not rectilinear and their motion
takes place on a plane. After constructing breathers following numerically accurate procedures, we launch them
in the chains and investigate properties of their propagation dynamics. We find that breather motion is strongly
affected by the presence of curved regions of polymers, while the breathers themselves show a very strong
resilience and remarkable stability in the presence of geometrical changes. For chains with strong angular
rigidity we find that breathers either pass through bent regions or get reflected while retaining their frequency.
Their motion is practically lossless and seems to be determined through local energy conservation. For less
rigid chains modeled via second neighbor interactions, we find similarly that chain geometry typically does not
destroy the localized breather states but, contrary to the angularly rigid chains, it induces some small but
constant energy loss. Furthermore, we find that a curved segment acts as an active gate reflecting or refracting
the incident breather and transforming its velocity to a value that depends on the discrete breathers frequency.
We analyze the physical reasoning behind these seemingly general breather properties.
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[. INTRODUCTION global elastic properties. Our basic question is how energy
localization in the form of DB’s interplays with single chain
The basic question to be addressed in this paper relates pplymer elasticity.

the dynamics of space localized lattice oscillation modes re- Our basic model will be an arbitrarily shaped chain of
ferred to as intrinsic localized moddf_M's) or discrete €qual masses coupled typically via nonlinear springs involv-
breathers(DB'’s) in elastic polymeric chains with rigidity ing only two-body polynomial-type interactions. Unlike re-
[1-20. Unlike solitons, DB’s appear to be generic modes ofc€nt work on the same general topRi], we will not con-
nonlinear lattices provided the latter are equipped with thes&'der long-range interactions presently so that we keep the
two basic ingredients: nonlinearity in the interactions andcOMPIexity of the model and the number of parameters used
lattice discreteness. During the last several years there héga minimum. We will instead use first and second nglghbor
been an abundance of theoretical work dealing with varioudteractions that ha_\\_/e _the same form but enter W'th different
aspects of DB properties, including generatjan-8], rigor- Strengths z_and equ_|llpr_u_Jm d‘!stances;. After the flrst_stage of
ous existenc6], dynamics and mobilitjg], thermodynam- our ana}y&s we will initially .turn off” the §econd n.elghbor
ics and statistical propertie§11,13, quantum features interaction and study the simplest possible nonlinear bead

. > _and spring model, while subsequently the second neighbor
[10,18, etc. As a result, many of the basic DB propertiesi,iaaction will be included and comparisons will be made
have been revealed and are now relatively well understooq,otveen the two cases. Since our main interest is in under-

On the e>'<perimental front, a recent qvalanche of results in &tanding the physics of breathers in biomolecules such as
large variety of systems demonstrating DB presence, or aéroteins [22] rather than general homopolymers, we will
least strong indications for it, has set the whole area on veryayve to somehow restrict our study to rigid and quasirigid
solid and promising new groun@$7-20. There can now be polymer geometries. This can only be done artificially
more precise studies of specific condensed matter, chemicgdrough constraints when only first neighbor interactions are
and biological systems, as well as discussion on the design @fken into account due to the high level of degeneracy of the
breather based materials. The work to be presented in thigshain. The source of the latter is geometric since there are
paper points also in this direction, as it attempts to deviatenultiple equilibrium states that are distributed in various
from simple one-dimensional lattice models by introducingconfigurations on the plane while preserving the nearest
one additional new element, that of single chain elasticityneighbor equilibrium distances. However, when the second
We will thus be concerned here with polymeric chains ofneighbor interaction is turned on, the chain degeneracy re-
masses coupled with springs that can move, in principle, irluces substantially and there is no need for additional exter-
the whole &,y) plane and are characterized by local andnal constraints.
As mentioned earlier, the questions to be addressed here
will focus on the interplay of energy localization in the form
*Permanent address: Department of Physics, University of Cretef DB’s and biopolymer spatial structure. Since this presents
and Foundation for Research and Technology—Hellas, P. O. Boa rather broad topic we will narrow the questions in this
2208, 71003 Heraklion, Crete, Greece. study down to the following thre€a) can a stable breather
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be generated in a curved polymer with some rigidiby;can

a breather propagate in curved portions of a polymer and
what are the features of its kinetics as it traverses straight and
curved segments of the polymer; afg) can the breather
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motion affect the polymer geometry? In order to tackle these
questions it is critical to have a systematic method of gen-
eration of localized DB modes with different frequencies and
also to be able to make them mobile at desired possible (a)
velocities. These systematic tools already exist and with ap-
propriate modifications and improvements have been used in
the present study. For the numerically exact generation of
one-dimensional DB’s we used the construction from the an-
ticontinuous limit[8], while for a faster, yet accurate ap-
proximate construction we used the algebraic metf28].
Furthermore, for rendering the DB mobile we used a simple
variant of the pinning mode excitation meth¢@]. These
methods provide systematic tools for breather construction
and dynamics. (b)
foIIECv?nZ?S(; rDei'Ssﬂlrt:tgfbtrhel;tﬁg:’gyc;?]nbzegseigg'?er(ljzier? (I:Ertﬂe FIG. 1. (@) Picture of the model. The interaction between nearest

neighbors is controlled by potentidd(d,) and depends on their

linear polymeric chains, are surprisingly stable, and Ca.mrelative distancel, (full lines). There is also an interaction between

prhopagatebqwt(?l easgy th_rou%h curvt;:d pf’il’tS Of. rt_]hg.ﬁChamSecond neighbors controlled by(e,), which depends on their rela-
They can be reflected at interfaces of regions with di erentive distancee,, (broken line$. (b) Equilibrium distances,,=a and

curvature without lOSing their integrityb) The evolu_tion of b, between adjacent masses and next nearest neighbors, respec-
DB'’s seems to be taking place through conservation of theifyely, as a function of the relative angte, .

internal and translational energy. This law of energy conser-

vation enables appropriate internal to/from translational enconstraining the angles between adjacent polymeric seg-
ergy transformations that, in turn, dictate the DB shape an#hents to constant but arbitrary values. This reduced model is
extent as well as kinetics while the DB frequency does nothe workhorse of our study since it gives the basic features of
change. Some small constant energy loss is observed in tfR§€ather dynamics in curved spaces. In this section, we will
less rigid chains that forces breathers to change slightly the®ive all details regarding generation of mobile DB's and we
form while propagating(c) The presence of a DB in an will present the results of the DB dynamics in curves. We

flexible polymeric chain induces large chain amplitude mo_W|II also demonstrate here one of the basic results of this

tion that destabilizes the polymer when only first neighborwork, viz., that of the adaptive breather evolution governed

interactions are used, but without much affecting the breatheE}y a local form of the law of conservation of energy. We will

(x n+1> ¥n+1 )

if second neighbor interactions are incorporated. The spec inally investigate the dependence of the phenomenon on the

ficity of this effect depends primarily on the breather fre- B frequency. In this section, we will also test the stability
guency or internal energy. Based on these results, which Wiﬁ’.f our results in chains that. are weakly perturbed W'th static
be elaborated on below, we can make some more generg|sorde.r' In Sec. IV’. we will include the secqnd neighbor
statements regarding the possible role of breathers jijiteraction and we will repeat some of the previous work but

biopolymers. It appears that stable breather modes cannit the fully two-d_lmen5|o_nal model. The presence of th.'.s
only be generated easily in curved chains but can allS&econd neighbor interaction augments the structural stability

traverse parts of the polymer in an adaptive fashion retainin%f them:ham ?r('jd abSS'StS In tl:.e DB stability. F'r]latlrlly’ In SEC' \é
their basic features. They can thus transfer energy packe € will conclude by presenting a summary of the work an

across segments of the polymer. These features make breafi! outlook on this work for its potential use in biomolecules.
ers very appealing energy managers of internal biopolymer
organization since they accomplish three functions simulta-
neously, viz., they can be generated locally through chemical Let us consider a curvilinear polymer chain such as the
to localized vibrational energy conversion, facilitate energyone depicted in Fig. (B). The chain consists dff molecular
transfer through adaptive transport, and possibly convert lounits interacting through pairwise two-body interactions. We
calized vibrational to mechanical energy at an alternativevill make the following three assumptionga) all unit
site. masses are identical and equalntp (b) there are only first

In order to cover the topics briefly touched above we willand second neighbor interactions between the molecular
use the following structure in the remainder of the paper. Irunits, and(c) the polymer lies on thex,y) plane. Clearly in
Sec. Il, we introduce the model and discuss the aspects af true biomolecular chain none of these assumptions is
interest by making a connection with biomolecular modelsstrictly valid. They are made here, however, since they are
Since we are mostly interested in polymers with some rigid-compatible with the basic spirit of this work, viz., keeping
ity, we introduce in Sec. Il a first neighbor model with con- model complexity to a minimum so that the role of nonlinear
straints that simulate the latter. The model rigidity is set bydynamical localization becomes transparent. If the polymer

Il. THE MODEL
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we have in mind is a protein segment, assumpt@rwould  or, more explicitly,
be compatible with considering the units as being part of a

backbone consisting of carbon or nitrogen atoms that only ms :Xn_Xn—lf _ Xn+1_an N Xn~Xn-2
differ slightly and ignoring amino acid side chairib) with % d, nody, "M en Gn
assuming very quickly decaying intermolecular interactions
as well as the absence of hydrogen bonding, érdthe _ Xnt2™ Xn ®
absence ofx helices. While these are reasonable for some €ni2 n+2
protein segments, they are not true in general; they can easily
be lifted, however, in a more specific system study. «  YnTYn-1 Yn+17 ¥n Yn~¥Yn-2
Each mass unit in the chain is labeled by an indgx MYn= d, fn— dnis fnea e, In
while its location is specified through the pak,(y,) de-
noting its location on the plane with respect to an absolute ~ Yn+27¥n 9)
Cartesian system. Since we will use first and second neigh- €nip %
bor interaction potentials we need to introduce the following
two Euclidean distances: where
dn:[(Xn_xnfl)z"'(yn_ynfl)z]llza (1) an_dV(dn)/ddni gnE_dW(en)/den- (10)
en=[(Xn—Xn_2)2+ (Yn—Yn_2)2]"2 2) The form of the equations suggests the introduction of the

relative variables,, and p,, that will be also normalized us-
We note thatd, ,e, are simply the distances on the planeing a characteristic lengta,
between thenth unit and the §—1)th and f—2)th units,

respectively. The polymer chain plasticity as well as rigidity En=(Xa—Xn-1)/a,
are controlled by the ensemble of first and second neighbor
constant equilibrium distances,,} and {b,}, respectively. pn=(Yn—Yn-1)/a. (11)

The constanta,, is the equilibrium oscillator distance be-
tween unitsn and (h—1), while b, is that between thath
and (h—2)th units. The explicit configuration of these two come gn;2a2[§§+p§]1/2 and e”.:az[(§”+§”*1.)2+(pf‘
sets of constants fixes the desired equilibrium geometry of Pn-1)"17 res_,pectlvely. In_troducmg how the ad|mens_|onal
the polymer chain. Although the derivation presented here i§°MPlex coordinate,= ¢, +ip,, we obtain the following
general, in the following sections we will restrict ourselves Co0mMpact form for the equations of motion:

to the casea,=a Vn, andb, depends on the geometrical
structure we want to study, i.e., it fixes the relative anglgs

In terms of these new variables the Euclidean distances be-

inz Rn+1tRa-1—2R;

[see Fig. b)]. _ _
Let us finally define the interaction potentials. Although FQn+27Qn-17Qnt Qi (12
we will present below general equations of motion for arbi-,, :
trary pairwise potentials, in the specifics we will use the
following Fermi-Pasta-UlanfFPU) -type potentials: z,
R,=——",, (13
(do—ap)?® . (dy—ay)* 2l
V(dy) =Ky 1 : ()
2 4
Q,=— mg (14)
(en=by)® (e—by)* T mr T
Wi(en) =K, . (4 N |
where for the specific FPU potentials of E¢3) and(4), we
The Hamiltonian for the planar polymer chain can be thenhave
written as z, _ ~
Rn:_[(|zn|_an)+71(|Zn|_an)3]u (15
m ‘oo |Zn|
H=2 S (qatyn)+2 {V(d)+W(ey},  (5)
n n Z,+t2, 1 ~
. Qn:mp\dzn"'znfﬂ_bn)
where the index runs over all polymer masses. The result- ZnTZn-1
ing equations of motion are ~
9 + yal|Zat 201] =B, (16
mx,=——U,, my,=—-—U, (6)  where time has been adimensionalizedtastK;/m and
9Xn 9Yn the parameters arey;=a’g1/Ki, A=K,/Ky, 7,
with =a’B,/K,, a,=a,/a, andb,=b,/a.
Equations(8) and (9) or the compact forms in complex
U,=V(d,)+V(d, 1) +W(e,) +W(e,.2), (7)  variables(12) are the basic equations to be used in this work.
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A Runge-Kutta algorithm of fourth order has been used to 25 T T . . .
integrate the equations of motion with a time st o—o 0=0°
=o.%o5. ’ * 20| &, ,=COS() % ’ 1

Ill. ARESTRICTED MODEL

A. A modified FPU equation

In the preceding section, we wrote the general equationstn
of motion that govern an arbitrary polymeric chain on the
plane when the masses interact with specific first and secon
neighbor interactions. If only first neighbor interactions are
taken into account the resulting chain is characterized by ¢
high degree of flexibility, multiplicity of stationary points,
and a high degree of degeneracy and instabilif&g25.

While the study of this completely flexible polymeric chain 15 ! ! s s s
is interesting, it is not in tune with our main objective -6 -4 -2 0 2 4 6
here—to work with models that are compatible with biopoly-
mers. Since the latter are characterized by a high degree of FiG. 2. DB solutiongalgebraic methodwith T,=2.122 for the
rigidity, we need to introduce external, additional constraintsmrFPU model for different values af. As expected, the solutions
if we want to stay at the lowest level of polymer description,tend to the one-dimensional DB solution corresponding te0.
viz., that of retaining only first neighbor interactions. To
achieve this goal, we introduce rigidity in this model by con-
straining the relative angles between adjacent bonds to co
stant but arbitrary values. This can be accomplished easily
we write Eqg.(12) with only first neighbor interactions using
the polar representation,=r, exp(6,) and introduce addi-
tionally the local relative displacement,=r,—a,. The
constraint of fixed relative angles in these new variable

IIBB'S in FPU chains &, varies smoothly from 0 to 1 in
H"e anticontinuous limit method

For rendering DB’s mobile, we use a simple modification
of the pinning mode methof®]. We assign an initial DB
velocity proportional to the gradient of the absolute value of
its amplitudes; the velocity vector thus constructed is parallel
Yo the dominant antisymmetric stability eigenvector of Ref.

readst = 0,=0, 0n(t)=0,(0). _ _ [9]. The resulting mobile DB is not exact and thus sheds
We finally obtain a reduced dynamical model describedpjtially a phononic wave packet that travels at the sound
by the equations velocity. With this method and for a sound velocity equal to
. - - X unity, we are able to render DB’s mobile within the velocity
Tn=é€n+1nfnrat €nn-afn-1=2fn, window v €[0.035,0.15, i.e., the fastest DB generated in
this fashion has a speed approximately equal to 15% of the
€n,n—1=COL 0= 0,_1), sound velocity.
fo=—f. an - -
B. Breather motion in curved rigid polymers
In the specific case of the FPU potential of E8), we have After having explained the restricted model structure and
R the methods of construction of mobile DB’s, we are now in a
fo= Tt y270. (18)  position to perform numerical experiments dealing with the

dynamics of DB’s when passing through a curved region. In
We will term Eqgs.(17) and(18) modified Fermi-Pasta-Ulam particular, we consider a hairpin geometry such as the one
(mFPU equation. For a straight line geomets,= 6° Vn, depicted in Fig. 3, characterized by angleand equilibrium
the mFPU is equivalent to the FPU moded,(,,=1), distances between particlasthe specific choice of the ge-
which can be obtained from Hamiltoniafb) in a one- ometry has been inspired i sheets of proteins. Neverthe-
dimensional space. In contrast, for an arbitrary geometry,
there is no Hamiltonian associated with the mFPU equations
of motion except in the form of a two-dimensional one with
holonomic constraints.

For the numerically exact generation of one-dimensional y L

DB’s, we used the construction from the anticontinuous limit x
[8], or an alternative algebraic meth@2i3] that renders ac-
curate DB’s rapidly. In Fig. 2 different breathers are shown
for several values oé,; ,=C=1 Vn, which correspond to a
circular or zig-zag geometries. Note that exact DB’s of the -
mFPU model withe,,; ,=C Vn correspond to intermediate FIG. 3. Hairpin geometry characterized by angl@and equilib-
steps of the anticontinuous limit method for generating exactium distancea between adjacent particles.
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FIG. 5. (Top) Velocity inside the curved region of the hairpin

FIG. 4. Site where the center of the DB is located as a functiongs a function of the velocity in the straight regiog for a hairpin

of time. The DB starts moving in the straight region of the hairpin. with o= 7/42. (Bottom) Ratio between velocities inside {) and
The curved region is inside the horizontal dashed liGBsp) Fora  outside ¢,) the hairpin as a function of the characteristic angle of

given curvatureq= /16, the DB enters into the curved region or the hairpin. All the data inb) correspond taw,=0.113. Broken
rebounces depending on the initial velocitottom) For a given  |ines are a guide to the eye.

initial velocity, depending on the curvature, the DB enters into the
curved region or rebounces. The parameter valueKares,=1

increases in a seemingly linear fashion. In Figh)5we plot
anda=10 in this work.

for a fixed initial velocity, the velocity inside the curved

region as the curvature increases. As the curvature decreases,

Ie_ss, the general kinetic breather results are not specific t§a reduction of the velocity inside the curved region de-
this geometry, as alternative curves would not affect the regreases. Figures® and 5b) correspond to initial velocities

sults qualitatively. _above the critical one and to hairpin angles below the critical
We first construct an exact FPU breather, corresponding t9a e respectively.

an exact DB of the mFPU model in a straight chain geom- | Fig 6, we plot the amplitude of oscillations of different
etry, with periodT,=2.122. The parameter values for the sjtes of the chain as a function of time when a DB goes into
FPU potential(3) areK,=p,=1 anda,=a=10Vn. The  the curved region. We have checked that the DB maintains
amplitude of the central site of the DB is 168. The re-  jts amplitude and period while traversing the curved region.
sulting DB moves with velocities in the ranggn»~0.03  The main differences between oscillations of masses outside

andvmax=0.15, where length is measuredarunits. These  and inside the curved region is the length of the time interval
velocities are much slower than the sound veloaity,1.

In Fig. 4, we plot the position of the DB as a function of
time for different initial velocities(top) and for different . . . .
hairpin geometriegbottom); we see that a DB traverses a
curved region or rebounces depending on its initial velocity
and on the local curvature. For a given hairpin geometry, the
DB rebounces for small velocities, while for higher veloci-
ties it traverses the curved regi¢iop picture. For a given
initial velocity in the straight region, the DB rebounces or
enters into the curved region depending @nThere is a
critical curvature below which the DB is able to pass and
above which the DB is reflecte@ottom picturg. In some
cases, for critical velocities or critical angles the DB is
trapped in the bend. When rebouncing, the DB velocity re-
mains unchanged. In contrast, when traversing the curvec

ny+1

ny+7
n,+8
n,+9

n

region, the DB velocity decreases but once the DB reache:
the other straight segment it recovers the initial velocity.
Let us now consider the DB velocities when the DB en-

20

70

120

t

170

220

270

ne+15

ters the bend. The velocity inside the curved region for a FiG. 6. DB amplituder, as the DB's moves along a straight line
given hairpin geometry as a function of the initial velocity in and enters into a curved region, which starts atrsjte 8. As all 7,,

the straight segment is plotted in Figah As the initial

oscillate around zero, we have displaced them 7y 7,,+nC,

velocity increases the velocity inside the curved region alsavhereC=0.4. The characteristic angle of the hairpindis 7/25.
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FIG. 8. Energy of astatic DB with T,=2.122 in a straight line

FIG. 7. Critical angle for a DB passing a hairpin structure as a(Fpy model. Energy is in units o&? in all figures.
function of the velocity in the straight region, just before entering
th_e curv_ed region. Empty cir_cles correspond_ to results for a DBpp of periodT,=2.122, place it in the rectilinear part of the
with period T, =2.5 and full circles to a DB withl,=2.122. The  chain and follow its time evolution. During this evolution
angle is given in degrees. The sound velocity is 1. the DB energy alternates between the two extremes of hav-

ing all the energy in the potential form and the other of
during which the mass oscillates. In the curved region, sincéaving it completely in the kinetic form. We designate by
the velocity is smaller, the time interval is larger. Epg the internal breather energy and observe in Fig. 8 that it

We have also computed the critical angle for DB'’s with is to a high accuracy~108) constant. We note that in all
two different frequenciegsee Fig. 7. For the range of ve- DB energy estimations we calculate the energy by selecting a
locities we are able to move the DB, the critical angle abovdattice window that includes all dominant DB lattice sites;
which the DB can enter into the bend increases linearly witithe typical number of sites chosen is 11. According to Egs.
the incident velocity. As the frequency decreases, the critical3) and(5), and subsequent variable changes made in Secs. Il
angle increases. In other words, for a given initial velocity aand Il A, the potential and kinetic energies are computed as
DB with lower frequency traverses more easily the curvedollows:
region than a DB with a higher frequency.

Although the results presented here focus on those curved 0 2, 2 1 4 4, 4
regions corresponding to hairpin geometries, we also have Epot:fp;fs ZKla (Tht The) gﬁla (Tn+ Tns1)
checked what occurs for different geometries, such as two ° (19
straight linked segments forming a total angie and a
curved part given by a hyperbolic tangent. The results arend
qualitatively the same as for a perfect hairpin geometry, the
only difference being the specific values of the critical angle PR
and the velocities inside the curved regions. We have also Bkin=5 n:nE_s {Xa+yal, (20
tested this behavior for disordered chain geometries: taking 0
the halrpln geometry as refe_rence, we slightly perturb th.%vhereno is the central site of the DB(n andyn are com-
relative angles between particles and launch a DB on this . R . R,
imperfect hairpin geometry. If this disorder is small enoughPutéd according ta,=x,_1+a7,c0s@,), and y,=yn-1
the behavior of the DB is qualitatively the same. +ar, sin(¢,), where{6,} are the initial fixed angles.

The total energy of the breather is thus

no+5

ng+5

C. Energetics of breather dynamics
. . o Eps=Epott Exin- (21)
In the preceding section, we addressed the specifics of DB

motion in curved geometry for an angle constrained modeBince we do not have an exact Hamiltonian for the mFPU
with only first neighbor interaction. We found that DB’s ei- model for arbitrary nonuniform angles, i.e., in the bend re-
ther propagate through the bend or reflect while they princigion, we only use the exact expressions of the breather en-
ply keep their identity and basic features. We will search inergy in the straight sections of the hairpin.

this section the roots of this behavior and see that they are Let us now come to the case of a mobile breather; in order
determined quite simply by local DB energy conservation.to investigate its dynamical profile we select appropriately a
Let us begin by constructing via the numerically exact pro-movinglattice window centered on the central DB site. The
cedure from the anticontinuous limit a static, i.e., nonmovingcorresponding behavior for the breather in the rectilinear sec-
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0.07 - - = the nonexact character of the mobile DB. There is no extra
/ loss of energy just after exiting compared to just before en-
° . tering. Therefore, we can consider that there are no appre-
’ ciable energy losses as a result of motion in the curved part
/ 1 of the chain, and thus roughly speaking we can say that DB

’ motion in curved chains conserves the breather energy.
s/ . As a result of this study of the restricted model we ob-
/ serve that the dynamics of DB’s through a bent region of a
0.03 K . polymer with angular rigidity can be parallelized to geo-
. metrical optics. Depending on their state, breathers are either
0.02 L - reflected or refracted through the bent segment, which acts
® |- m'v’/2 like a medium with an index of refraction different from that
0.01 L o 6 m’=0.065 _ of the straight segment. In all cases, the energy of the local-
ized packet is conserved, provided the DB is launched within
. . . a velocity window. In some sense, the curved, angularly rigid
0.0 0.5 1.0 15 20 segment of the polymer acts as a gate or a filter that selects a
v breather depending on its individual characteristics, viz., its
FIG. 9. Translational energy of a mobile DB in a straight line frequency and velocity.
(FPU model as a function of the velocity. The sound velocity here

0.06

0.05

0.04 | >

ir

is 10. The dashed line is a parabolic fit, correspondingtp="0. IV. SECOND NEIGHBOR INTERACTIONS
Inset: Amplification of the energies of aobile DB with Ty
=2.122 andvy=1.545 in a straight linédFPU mode). Velocities A. Hairpin geometry

are in 0.1a units. In the preceding section, we investigated the dynamics of

. ¢ the hairpin is al h i Fig. 8. The | B’s in bend polymeric chains with only first neighbor in-

tion of the hairpin is almost the same as In Fig. 8. The locaye 5 +tions put with rigid angular constraints that enable one
energy exchanges_ betwee_n k'.ne.t'c and potential ENETRY fix the chain geometry to a desired shape. The angular
seemingly proceed in a fashion similar to the one of the stati¢,,\iraint has been included so that the chain acquires rigid-

g¢, 9- Yeneral homopolymers. Clearly, this angular restriction is

which magnlf_les a selecte_d segment. We_ can ve_nfy _that ne\'/ery drastic, since it induces an artificially local strain in the
ther the maximum potential nor the maximum kinetic ener-.nain. which. on the other hand. makes the analysis much

gies are equal t&pg and additionally that there is a clear gagjer we will now lift this angular restriction in a way that
asymmetry between these two maximum values. The reasqthapes the chain to retain rigidity around a prescribed shape.
for this asymmetry clearly lies in the fact that the T“Ob"e DB This will be done by including, in addition to first neighbor
should have som&anslaﬂonalenergy. Let us deS|gnat'e by interactions, also second neighbor interactions. As noted in
AE,, AE, the differences, respectively, of the maximum gec | “hoth first and second neighbor interactions will be

potential and kinetic breather energies from the total DB eNtayen 1 be similar but with different coefficients, i.e., sym-
ergy, Epg. We would like to estimate the instantaneous yeyic quartic polynomials in the relative displacements be-
translational breather energy. Whéin=E,i," the differ-  yyeen masses with different quadratic and quartic strengths.
enceAE; is pure potential energy, while whel,,—=EJ5  However, while the equilibrium spacing of the first neighbor
the differenceAE, is pure kinetic DB energy. A good esti- interaction is taken to be the same constant across the chain,

mation thus for the translational DB energy is simply the next nearest neighbor distarigevaries locally in such a
way that a desired geometry in the equilibrium chain struc-
Ei=Ekin — Epot =AE;—AE,. (22)  ture is produced, as can be seen in Figh)1In particular,

when the relative angle between two next neighboring

We observe in the inset of Fig. 9 that the translational DBmasses isy,,, their distance is chosen &g=2a cos(,/2).
energyE,,s is only a small fraction of its total enerdypg ~ The nearest neighbor nonlinear interaction is mostly respon-
(Eyas is at most 1% ofEpg). The evaluation ofE; .5 iS  sible for the local longitudinal dynamics, whereas the next
done after averaging over several DB periods50). The nearest neighbor interaction is for the geometric and angular
measured translational energy as a function of the DB velocrigidity of the chain. The next nearest neighbor interaction is
ity is plotted in Fig. 9. By fitting the translational energy as athus playing a role similar to the angular constraint of the
kinetic energy of a compound object, we obtain an effectiverestricted model, while, on the other hand permitting trans-
breather mass that turns out to be much smaller than theersally both flexibility and focusing.
individual particle mass. Since we are interested in a comparison of the DB dynam-

In order to explore the influence of the curved region inics of the restricted model, we will impose the same hairpin
the total energy of the DB, we calculate the breather energgeometry(see Fig. 3on our polymeric chain and investigate
after crossing the curved region. Before entering into theseveral cases with different parameter values for the com-
curved region and after exiting, the DB energy decays expoplete model introduced in Sec. [Egs.(8) and (9)]. Since
nentially with a very slow decay rate of orderl0 °, due to interactions decay with distance, first neighbor interactions
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FIG. 10. Chain geometry and breather position at different times ~ FIG. 11. Position of the DB centdtop) and energy of the DB
for a chain with first and second neighbor interactiong €3,  (bottom as a function of time for a hairpin curvature given by
=1 andK,= 8,=0.3). The center, which occupies two sites, of the = 7/26 anda=10 as the second neighbor interactions are changed.
DB is marked with the black circles. The hairpin geometry is givenParameter values(;=8;=1 andT,=2.122.

by a= /16 anda=10. x andy are in units of 0.1a in all figures. ) ] ) ) )
region but not at the exit. This behavior will be analyzed at

are stronger than second neighbor interactions,K.gx K,  the end of the section.
and 8,> B,. In this case, the almost exact longitudinal DB~ As a result, with the inclusion of second neighbor inter-
that is obtained from the algebraic method nearly coincidesictions we obtain a rigid chain of masses that can sustain
with the exact DB of the FPU modého second neighbor localized oscillations. In particular, the harmonic part of the
interaction$. We have worked with the same DB period, second neighbor interactioK,,, seems to be the main rea-
T,=2.122, as before. We note that, by construction, our DBson for the stability and rigidity of the chain, whereas the
is accurate in the longitudinal direction of the chain but doesanharmonic part3,, increases the DB stability while reduc-
not involve any transversal motion, and as a result it is not iring its energy loss. Other possible scenarios that mimic rigid
general an exact breather for the arbitrarily shaped chain. chains are possible; see, for example, RéB]. Now we

As in the preceding section, we are interested in the dyproceed by studying the basic features of the DB kinetics on
namics of a DB along a rigid curve. We first explore thethis chain with hairpin geometry.
effect of second neighbor interactions on the rigidity and As in the restricted model the DB enters the curved region
stability of the chain. We consider a hairpin structure, launcHor low curvatures and rebounces for high curvatufese
the DB in the straight region, while removing any linear Fig. 12. However, since this model is not as rigid as the
sound modes possibly induced initially on the lattice as aestricted one, the critical angle increases. Thus, the more
result of the breather kick. The propagation of the DB in arigid the chain is, the smaller the critical angle below which
hairpin shaped chain with first and second interactions ishe DB rebounces seems to be and the less energy the DB
shown in Fig. 10. We observe that the inclusion of secondoses when finding a curved region.
neighbor interactions adds rigidity and stability to the chain In contrast to the restricted model, the critical angle seems
structure, the chain acts similarly to the rigidly constrainednot to depend very much on the initial velocity of the DB, as
chain with only first neighbor interaction and DB motion seen in Fig. 12. In addition, we found that DB’s always re-
being quite stable. We note that in the absence of botlounce or exit the curved region with approximately the
second neighbor interaction and angular constraints the chagame asymptotic velocityr independently of the initial ve-
dynamics is unstable yet DB propagation is still locity and the curvature. If the initial velocity of the DB is
possible[26]. lower thanvg, the DB increases its velocity when entering

As regards the DB energ¥ig. 11), when the strength of into the curved region or while rebouncirigig. 12). If the
the second neighbor interactions incre@be rigidity of the initial velocity is abovevr, the DB decelerates when tra-
chain increasgsthe loss of energy when entering into the versing the curved regiofsee Fig. 13 When it exits the
curved region is smaller, which is in agreement with thecurved part and enters in the second straight region, the
results of the restricted model. A small reduction of the DBchange in velocity is much smaller than at the entrance.
frequency is also observed. Fine tuning of the second neighFhus, the hairpin is transparent for DB’s with a velocity near
bor interaction valueK, and B, can reduce these losses. vg.
The final velocity does not seem to depend very much on the In this case the hairpin structure acts as a more active gate
harmonic or anharmonic nature of the second neighbor intetthan in the restricted model. The curved segment can change
actions nor on the strengths of the parameters. Note that titbe velocity of the DB, thus allowing it to transverse a pos-
DB abruptly loses some energy while entering the curvedsible next curve of a much more complicated biopolymer
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FIG. 14. Different chain geometries corresponding to two
straight segments jointed by a curved region with the same curva-

FIG. 12. Position of the DB center as a function of time for two ture = 7/10. Distance between adjacent particles is10.

initial velocities and two hairpin curvatures given b= /6 (top)
and o= 7/8 (bottom). Depending on the curvature, the DB enters ) ) .
into the curved region or rebounces. Parameter valfgs: 3, 1> and can be summarized as follows: Upon interaction of
=1, K,=,=0.3, andT,=2.122. the breather with the bend region there is a change in its
motional state accompanied by a substantial loss of its en-
ergy. Subsequently, the breather accelerates to a velocity that
changes very smoothly after exiting to reach an asymptotic
velocity v that does not depend on the length of the bend,
and that coincides with the one previously found for the
hairpin geometry. After the initial substantial drop of the
The general features of DB motion that we presented fobreather energy, the rate of loss decreases and remains ap-
the polymer with first and second neighbor interactions argproximately constant for the duration of the simulation. We
not particular to the hairpin geometry. In order to elucidatenote that in all cases presented in Fig. 14, and in two of them
the influence of local or extended bends in the dynamics oplotted in Fig. 15, the terminal velocityg is approximately
breathers, we consider a sequence of lattice configuratiorgonstant, i.e., very weakly dependent on the specifics of the
with beginning and ending straight sections and a bend ifvend geometry.
between(Fig. 14). Performing the DB launching experiment  As a result of this and the previous studies, we find that
in these chains we obtain the results that are depicted in Fig?B motion in the polymeric chains contains two seemingly

without significant loss of energy and without significant
change of speed.

B. Alternative geometries

50 ' ' ' ' '
880 |- ve~0.24 1
v,=0.297 v,=0.374
n 840 ¢ i
0 N=10
BOD [ -mmmmmmmmm e e e e -
M—d-‘w"ﬂ”
760 | | |
n  _s
6.1 |
59 |
DB
-100 57 |
55 |
53 0 260 460 660
-150 L L t
0 200 t 400 600

FIG. 15. (Top) Position of the DB center as a function of time
FIG. 13. Position of the DB center as a function of time for a for two of the geometries of the previous figure dbdttonm) ener-
hairpin curvaturex= 7/26 and different initial velocities. Same pa- gies as a function of time. The parameter valueskye 8,=1,
rameters as in the previous figure. K,=B,=0.3,a=10, and the initial DB has periot@l,=2.122.
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FIG. 16. (Top) Position of the DB center anghottom energies
as a function of time for DB’s in a straight chain. An initial static FIG. 17. Position of the DB center and energies as a function of
DB and a moving DB have been considered. In the former an initiatime for two DB's with different period in a straight chain. The

perpendicular perturbation is made where the DB is set. In thedB's are initially static and a transverse perturbation is made where
latter, the DB, while moving, finds the transverse perturbation. Pathe DB is located. Parameter values are as in Fig. 15.
rameter values as in Fig. 15.

very similar to those of the geometric bend. A similar result
general features, i.e., that geometry induces an energy loss @ﬁ,observgq .if, for instance, the transversal 'perturbation is not
the breather and also a selection mechanism for an optimalocluded initially in the breather shape but is effected after it
propagational velocity. The energy loss is clearly inducedS launched at some other spatial region. We note that in all
initially at the bend region but it is preserved at much slowerc@ses studied the small but not negligible breather energy
rates even when the breather returns in a rectilinear geonf0SS persists at all times. As seen in Fig. 17 the asymptotic
etry. The terminal velocity, on the other hand, does not seefelocity ve and the rate of energy loss depend on the DB
to be very sensitive to the specifics of the chain or the gefrequency. In Fig. 18 the explicit dependencewvgf on the
ometry of the bend and its value for the specific DB fre-DB frequencywy, is shown.
quency studied is near4, wherec is the speed of sound in ~ Finally, we stress that the existence of an asymptotic
the system. Since these phenomena are absent from both thed a sudden decrease of the DB energy is not observed
general one-dimensional model as well as the restricteWhen longitudinal perturbations are set in the system, or
model with angular constraints, their source is related to th&hen DB is crossed by phonons. Thus the features we have
additional chain flexibility in the transversal direction as well described are due to the flexibility of the chain, which can
as the fact that the initially injected breather is not an exacfnove in two dimensions.
two-dimensional breather, either for the straight section or We will now give qualitative arguments based on the ac-
the bend region. Thus, we need to elucidate on the role th&umulated numerical experimentation that points to the fact
the transversal degrees of freedom play in the chain with first

and second neighbor interactions; this will be done in the 04
following section.
0.3 | . .
C. Breather acceleration, damping through dephasing, .
. . v/c
and terminal velocity .
We consider now the polymeric chain with first and sec- 02 .
ond neighbor interactions but include no geometric bend, R
i.e., we take it to be rectilinear. We set a breather in the usual 01 | .
way, adding, however, some small random perturbation in its
initial transversal shape. Thus, the initially static longitudinal
DB is found to oscillate on a two-dimensional chain. The 0

results of this experiment are presented in Fig. 16. For an
initially stationary breatheruy;=0) with transversal pertur-

bation we find that the breather initially loses some energy, F|G. 18. Ratio between the asymptotic velocity and the sound
begins moving, and shortly reaches the terminal velagity  velocity (c= K, +4K) of an initially static DB in a straight chain
while at this stage its energy loss becomes substantiallyith second neighbor interactions and with a transverse perturba-
lower than the initial one. We thus find that an initial randomtion applied on it vs DB frequency. The phonon band is betow
perturbation in the transversal breather direction has effects 2. Parameter values are as in Fig. 15.
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that the phenomena of breather acceleration decelera- ' ' ' ' ' ' '

tion), the onset of a terminal velocity, as well as the near 4
constant energy loss stem from the same intricate nonlinea WVVAQAVAV%“
feedback mechanism that is operative between the couple ' ' ' ' ' ' '
longitudinal and transversal polymer degrees of freedom. A W
guantitative explanation will be presented elsewhere. The v

feedback loop that leads to the observed facts involves the : : : : : : :
following links. Stage I: A coherent signal with frequency
wg (breather is injected longitudinally and either through AVAW
perturbations or geometr§pend couples to transversal de-

grees of freedom. Stage II: The horizontal-transversal cou-

pling induces oscillatory motion in the center of mass of the AVAVAV/\VA\IA\}A\/\/
particles in the transversal direction at a frequeagy.,, that

can be close but need not be identicaldég. Stage Il ' ' ' ' ' ' '
Particles that move in the transversal direction with frequen- o AAAAAN AAAAAAN A \ f m : / N
cies substantially different frome+c ), introduce a dephasing

mechanism that depends on the amount of their detuning & e e T e e e e 50
well as their amplitudes. This gives rise to damping through ¢

dephasing, a mechanism related to linear Landau damping

[27] and that damps the transversal, and through the coupling FIG. 19. Longitudinal(thin line) and tranverse(thick line)
to some extent, also the longitudinal oscillations. Theoscillations as a function of time, for different massasin+1,
dephasing mechanism now makes the coherent oscillatioft2, n+3, andn+4 (from bottom to top. Parameter values are as
wrtcw spectrally cleaner since it damps the more incohereni Fig. 15 anda= /8.

part of the transversal motion. Stage IV: The cleanggy

signal as well as the induced longitudinal oscillations in thefaster energy loss. Additionally, when the induced transversal
tails couple resonantly through the interaction term to theyggillation is not dominantly antisymmetric, no acceleration
main longitudinal one; since it is a higher order effect, in(Or deceleration to ve is observed, although damping
most cases it dogs not affect directly the coherent sigpal through dephasing is clearly presef2s]. Finally, since

but couples to its modes depending on symmetry. If thyamping through dephasing is ubiquitous, there is a question
transversal mode is antisymmetrias in most cases pre- g o whether this will lead asymptotically to DB destruction.
sented'heoe it cqup!es to the dom_lnqnt DB antisymmetric Long term simulations have not shown either decay of the
mode, i.e., the pinning mode that is linearly responsible fohear constant damping rate or, however, substantial breather
DB motion[9] and accelerates the breather. As a result ther%ecay. It is possible, however, that after very long times, the
is an increase in DB velogity until a characteristic maximaljjyear dephasing regime ceases and nonlinearity comes back
valueve that depends mainly on the DB frequency and noty, rescue the breather from a linear death; this issue will have

on the specific characteristics of the geometry and the intef, pe addressed through careful long term simulations.
actions, as long as the chain has enough flexibility. In cases

where the breather initially was injected with velocities
higher than the terminal one, the dephasing induces damping
through the coupling and can also lead to breather decelera- Research work during the last decade has demonstrated
tion to the terminal velocity. that intrinsic localized modes are discrete lattice states with
In Fig. 19 the longitudinal and transversal motions ofinteresting dynamical and kinetic properties. Our main moti-
neighboring sites of the chain are plotted for a hairpin geomvation in the present work has been to depart from simple
etry with a=#/8, when the change of speed and sudderattice models and extend nonlinear localization research in
decrease of energy occur. Note that while neighboring sitemore complex systems with additional properties such as
oscillate in the opposite phase in the longitudinal directionelasticity. We chose as our basic model a simple polymerlike
(thin lineg, the phase of neighboring sites in the transversathain of masses connected via nonlinear springs that lies
motion changes from an opposite phase oscillation to an ientirely on the plane. The main reason for selecting such a
phase oscillation. When this dephasing occurs, and thus thmodel has been our interest in extending breather research in
symmetry of oscillations in the transverse direction changeghe direction of biopolymers. In our polymeric nonlinear
the DB changes its speed and decreases its energy. chain, we used short range first and second neighbor interac-
In defense of the previously presented mechanism, wéons only in order to understand their specific role in the
note that in all cases studied numerically we typically ob-dynamical processes without making the models too com-
serve DB energy loss that is approximately exponential anglex. Among the multiplicity of questions that one could ask
characterized by more than one exponent; the faster loda such a polymeric dynamical system, we focused primarily
takes place when the signal encounters the transversal peyn the interplay of nonlinear localization with controlled
turbation while the slower near constant loss occurs when thpolymer elasticity. Our methodology has been to use for the
DB has reached ther regime. Clearly, in the earlier stage most part well-established, numerically accurate techniques
there is substantially more dephasing leading to a larger anfr discrete breather construction, render them mobile, and

V. CONCLUSIONS
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subsequently study their transport properties in the system idrop is of the order of 10°. (b) As a result of the energy loss
various geometries. We used primarily the geometric conthere is an appreciable change in the breather character and
figuration of a hairpin since it provides the typical shape in aits kinetics. In particular, in most cases the B&celerateso
B sheet, one of the most abundant protein segment config@ higher velocity while in the bend region and retains its
rations. velocity upon exiting, in marked contrast to the behavior in
In order to move the upward ladder of biomolecular com-the constrained chain. The basic reason for this behavior lies
plexity in a systematic and controllable fashion, we firstin the additional translational and rotational flexibility that
studied a polymeric chain with only nearest neighbor interh€ chain has now and the intricate feedback mechanism be-
actions. Since the absence of other interactions makes tj€en the longitudinal and transversal degrees of freedom.

system too flexible to represent any biomolecule, we intro- is resu_lts ina more efficie_nt DB energetic adgption to the

duced rigidity by imposing angular constraints; as a result O%ocal r_enwronment while the increager decreasein speed

the latter, our initial two-dimensional model with quartic in- Is attributed to t_he resonant energy exchange between trans-
i jyerse and longitudinal internal modes of the breather and

mFPU model is one dimensional and chain geometry is in_c:hanneling of some additional energy into the translational

cluded in its coupling constants. The derivation of such argegrees of freedom. The higher demand for strain energy in

effective model was a major advance since it enabled us tg‘e_ bend is su_bsta_ntially offs_et by_ the second neighbor inter-
investigate DB kinetics using standard one-dimensional tec actions, fe.su'“”g Ina DB W'th higher tr_an_slauonal energy.

niques. In particular, we found that the DB’s initially he feSP'.“”g state W'th a max'?‘?a' velocity is seen (o propa-
launched in a rectilinear segment of the hairpin can traversgate €fficiently also in the rectilinear segment since, due to

the bend region by altering their velocity while in the bend "€ original energy Ioss', it is not possible. energetically to
and reverting back to their initial state after exiting this re-'€Vert to the originally injected state. In chains with stronger

gion. On other occasions, when the initial DB velocity is rigidity, where no such translational flexibility exists, like the

small, DB’s cannot penetrate the bend region, but rebounc FPU. chain presented here,. or I|ke.the chain in R2g],
without appreciable energy loss. Thus the bend region acts 4ae existence of an asymptotic vglocny was not observed.

an active gate selecting a DB according to its frequency and As .a.result of this study the d|screte breather emerges as
velocity. By studying in detail the local energetics of the an_efﬁcw_:nt energy transfer agent in more complex geom-
process we found that DB motion seems to be dictated bt €S- It is seen as able to be generated as a local depository
local energy conservation. During these processes the tot3] €Nergy. ransport it across chain segments with different

DB energy is conserved to a high degree and, as a result cal geometric properties, survivc_a Ioca! environment
: ' “changes, and adapt to the local strain requirements. Its dy-

do not observe substantial DB frequency shifts. ics d o be loss| thel th
After establishing the basic properties of DB dynamics in"amics does not seem to be lossless, nevertheless the mag-

the simple, constrained mFPU chain we moved on to a morQ'tUde of the energy loss is relatively small and most of it

complicated polymeric chain where second neighbor interac2ccurs at the interfaces with curvature changes. Even though

tions were also included and were of the same form as thos&® dY”am'CS oceurs with Igsses, It seems th"?‘t It can cope
of the first neighbor ones. This system is more realistic anty.‘”th it by altermg self-conS|stentI_y Its geometric conflgurg—
mimics better a biopolymer in that it uses the first neighbortlon and dynamic state and thus its motion. The paradoxical

interaction for its basic dynamics, the second neighbor on@€havior of an increase in DB velocity after a substantial
for structural stability, while ignoring longer-range interac- energy loss is attributed to this effect and it critically depends
tions. The question of DB dynamics is now more compli- on the presence of transversal degrees of freedom. We find

cated due to the possibility of affecting more extended chairﬁhuf] that [I?]B.,S can éransfer Ioc;atlhzed energtytr?utltteh efficiently
segments, especially in bend regions. When an initiall))n these chains and as a result we expect that they are pos-

launched breather approaches the bend region, the preserigly Playing a crucial role in the bioenergetics of true bio-

of the second neighbor interaction extends the influence diolecules.
the bend on the breather core before it enters the bend. In

other words, the perturbation caused by the beginning of the

bend region is felt by the breather center earlier than in the This work has been supported partially by the European
previous case and as result a more appreciable breather donion under the RTN project LOCNETHPRN-CT-1999-
ergy loss to the lattice is observed. The kinetic DB propertie€0163 and by the Direccio General de EnSanza Superior
were studied extensively and we found two important differ-e Investigacia Cientfica (Spaif under Project Nos.
ences in comparison to the mFPU constrained mo@l: SAB1999-0059 and BFM2000-0624. M.l. also acknowl-
There is substantial energy loss of the DB as it enters thedges the Ministerio de EducanioCultura y Deporte
curved region that persists at later times although at substaiSpain. This research was also partially supported by the
tially reduced rates. The initial energy loss in the entry of theU.S. Department of Energy under Contract No. W-7405-
curve has a decay rate of order f0or 10" # while later the  ENG-36.
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